Shoulder blade (scapula) pain causes, symptoms, treatments, and exercises

Leave a comment

Shoulder blade pain can occur for numerous reasons, and we are going to look into those causes along with the symptoms, treatments, and exercises that can help improve shoulder blade pain.

The shoulder blades – known as the scapula – are two triangle-shaped bones located at the top of your back. The scapula is connected to the humerus (upper arm bone) and clavicle (collar bone) along with the muscles of the upper back, neck, and arms.

Shoulder blade pain can be experienced above, within, over, or under the shoulder blades, as well as in-between and below the shoulder blades. As mentioned, there are numerous reasons for shoulder blade pain ranging from mild causes like muscle strain to more severe like lung conditions or tumors.

Causes of shoulder blade pain

Below are 27 different causes of shoulder blade pain to help you narrow in on what may be causing your pain.

Muscle strains, muscle contusion (bruise): Overuse of the muscles surrounding the shoulder can result in shoulder blade pain. Other causes of muscle strain are changing workout routine, overusing the muscles, lifting heavier weight than what you are used to, or sleeping in one position for too long.

Disc disease: Compression of nerves in the neck due to a collapsed or displaced disc can result in shoulder blade pain. You may also experience pain in your neck, or tingling or numbness down your arms to your fingers.

Heart conditions: More commonly seen in women, shoulder pain can be sometimes a result of a heart condition. Heart attacks, pericarditis, or aortic dissection can cause pain in the left shoulder.

Fractures: It is quite difficult to fracture the scapula, but it is possible. Fractures of the scapula commonly occur as a result of a car accident or fall and can lead to shoulder blade pain.

Shingles: Shingles is an infection from the chickenpox virus. This type of shoulder blade pain is often a burning sensation followed by a rash.

Bone metastases: Bone metastases occur with the spread of a cancerous tumor. The shoulder pain is often a result of the spread of breast, lung, esophageal, and colon cancer.

Lung conditions and tumor: Lung conditions like pulmonary emboli or a collapsed lung along with lung tumors can contribute to shoulder blade pain.

Arthritis, osteoarthritis: Arthritis or osteoarthritis can affect the scapula causing shoulder blade pain.

Snapping scapula syndrome, broken scapula, scapular cancer: There are conditions that solely affect the scapula, such as snapping scapula syndrome, broken scapula, and scapular cancer, leading to pain.

Osteoporosis: Osteoporosis is a bone disease, which causes the bones to become thin and fragile. The scapula can be affected by osteoporosis resulting in pain.

Abdominal conditions (GERD, stomach disorders): Sometimes, a shoulder blade pain can result from stomach and digestive issues. This type of pain can occur in the right shoulder and is a result of gallstones, peptic ulcers, and liver disease. Ailments that lead to pain in the left shoulder blade include pancreatitis.

Gallbladder disease: A gallbladder attack can cause pain under the right scapula and the pain can radiate from the upper abdomen to the shoulder.

Liver disease: Liver disease can lead to pain under the right shoulder because the liver is located under the right rib so the pain radiates to the shoulder.

Overuse of shoulder muscles: As mentioned, the overuse of shoulder muscles, whether through exercise or work, can cause pain.

Sleeping the “wrong way”: Sleeping for prolonged periods of time on one side or simply sleeping at an odd angle can cause shoulder blade pain.

Nerve impingement: If your shoulder blade pain radiates down your arm it could be a result of nerve impingement. You may also experience a burning sensation in your hand.

Rotator cuff injury: This injury is most common among athletes and affects one of the four muscles of the rotator cuff.

Scoliosis: Scoliosis is a curvature of the spine, which can cause pain between the two shoulders.

Paget’s disease: Paget’s disease is a chronic viral infection of the bones which can cause shoulder blade pain.

Brachial neuritis: Brachial neuritis is a rare neurological condition without a precise cause. Symptoms of brachial neuritis include sudden, severe burning pain above the shoulder.

Whiplash: Whiplash is a strain or sprain of the upper neck muscles, tendons, or ligaments. Pain can begin at the neck and radiate downward.

Fibromyalgia: Fibromyalgia is characterized by allover pain with unknown cause. Fibromyalgia patients are known to have tender points and shoulder blades are among those tender points.

Pleurisy: Pleurisy is inflammation of the lung membrane caused by a viral infection.

Enlarged spleen: An enlarged spleen can cause left shoulder blade pain, which can worsen when breathing in and out.

Frozen shoulder: Frozen shoulder (adhesive capsulitis) is inflammation and thickening of the shoulder capsule, which wraps the shoulder joint. The condition can take years to heal, but can be aided in physiotherapy exercises.

Avascular necrosis: Avascular necrosis is bone death as a result of limited blood supply. Symptoms include deep, throbbing, and poorly localized pain around the shoulder that can radiate down to the elbow.

Symptoms of shoulder blade pain

The symptoms you experience depend on the cause of your shoulder pain. Pain can be sudden, chronic, temporary, burning, radiating from one area to another, and appearing in different parts of the shoulder. Shoulder blade pain can also cause numbness or tingling, and pain can become worsened when lying on the shoulder or breathing.

Another symptom of shoulder blade pain is crepitus, which is a grating sound when the shoulder moves or when it is pressed.

Pain under right shoulder blade

Pain under the right shoulder can have minor or severe causes. Causes which typically result in pain under the right shoulder include using a computer mouse, carrying a child on the right side, incorrect posture, sleep positions, heart attack, gallbladder attack, liver disease, breast cancer, and arthritis.

Pain under left shoulder blade

Common causes of pain under the left shoulder blade include injury, aging, wrong sleeping position, cold or flu, dislocation, frozen shoulder, fracture, bursitis, torn rotator cuff, compressed nerve, trigger points, inflammation, heart attack, gallbladder attacks, and pneumonia.

Pain between the shoulder blades

Common causes of shoulder blade pain experienced in-between the shoulders are poor posture, herniated discs, gallbladder disease, heart attack, inflammation under the diaphragm, spinal stenosis, cervical spondylosis, osteoarthritis, and facet joint syndrome.

Shoulder blade pain diagnosis and treatment options

If shoulder pain does not go away within a few days, you should see your doctor as it could be an indication of a more serious injury or ailment. Your doctor will perform MRI scans in order to see what is going on with your shoulder to determine if medical intervention is required or home remedies will suffice.

Some treatment options for shoulder blade pain include stopping the pain-causing activity and resting, keeping proper posture, practicing scapular retraction exercises, applying cold and hot compresses, reducing stress, maintaining a healthy weight, practicing acupuncture, wearing a sling, getting massages, taking medications like painkillers or anti-inflammatory medications, getting treatment for underlying illnesses like heart or lung conditions, arthritis, and other infections, which could contribute to shoulder blade pain.

Stretches for shoulder blade pain

Here are some tips, stretches, and exercises you can perform in order to help shoulder blade pain.

Improve your work station: Ensure feet are flat on the ground and knees are bent at a 90-degree angle, back is straight, arms are bent at the elbow at 90 degrees, monitor is at eye level, and your mouse is close to your keyboard.

Correct your posture: Ear, shoulder, and hip joint should be aligned when sitting with good posture. Shoulders should not be slouched and your head should not be tilted.

Massage the area: Lay your shoulder on the massage ball and roll on it with the weight of your body.

Stretch the shoulders: Intertwine your fingers together, lean back, and hunch your upper body as far back as possible, push your hands as far away from you as possible, while looking down. In this position, you can move around to feel other areas of the upper back become stretched.

Stretch the thoracic spine: Have a foam roller underneath your shoulders and lay on it. Keep your ribs downward, but don’t arch your back too much. Keep your hands behind your head in order to support it. Roll gently on the roller.

Do a chest stretch: Stand in the middle of a doorway with each hand forward flat on the side of the door frame. Gently lean into the door frame and feel your chest opening up.

Strengthen postural muscles: Stand up against a wall with your back touching. Have your arms bent at the elbow, hands facing up, palms outward (you should look like a W). Lift your hands above the head to make yourself into the letter I, hold, and return back to the W.

After completing any type of exercise, apply heat packs to the area to further relax the muscle.

Written By:  Emily Lunardo

Article Source: http://www.belmarrahealth.com/shoulder-blade-scapula-pain-causes-symptoms-treatments-and-exercises/

“The Greatest Health of Your Life”℠

Boston Testosterone Partners
National Testosterone Restoration for Men
Wellness & Preventative Medicine

Advertisements

Benefits of Sermorelin w/GHRP2 in the First Six Months

Leave a comment

Sermorelin and GHRP2 both stimulate the patient’s own pituitary gland by binding to specific receptors that increase production and secretion of endogenous Human Growth Hormone (HGH).  GHRP2 also acts as an appetite suppressant allowing for increased weight loss.

First Month

Weight loss/Body fat reduction

Vivid dreams

Better, sounder sleep

Improved stamina

Optimistic attitude

 

Second Month 

Improved muscle tone

Increased strength

Improved skin tone

Improved nail growth

Better digestion

Weight loss/Body fat reduction

Improved vision

Enhanced sexual function

 

Third Month

Improved mental process

Enhanced productivity

Faster wound healing

Hair re-growth

Increased libido

Increased muscle size

Faster recovery from muscle soreness

Reduced PMS symptoms

Greater body flexibility

Reduced pain

 

Fourth Month

Heightened improvements with all of the above

At times improvements may seem to diminish or plateau

Rejuvenation is still a process. Benefits should resume with continued improvements

 

Fifth Month

Improved weight loss and reduction of inches

Improved skin texture and appearance

Skin thickening and greater elasticity

Reduction of skin wrinkles

Thickening of hair with a shiny, healthy appearance

Continuation of improved muscle tone

 

Sixth Month

Diminished cellulite

Improved resistance to colds, flu and other illnesses

Improved eyesight

Healing of old wounds

Disappearance of pain and soreness

Improved body contour

 

Contact us today for more information on Sermorelin/ghrps

“The Greatest Health of Your Life”℠

Boston Testosterone Partners
National Testosterone Restoration for Men
Wellness & Preventative Medicine

A Man’s Body by Decade

Leave a comment

Heart

The problem: As men age, blood pressure and cholesterol levels often increase. The fix: Eat a heart-healthy diet, exercise, and have your blood pressure and cholesterol levels checked annually. Consider a coronary calcium scan above age 50, if heart disease runs in the family.

Skin

The problem: Men ignore their skin more often than women. The fix: Get an annual head-to-toe skin screen by a dermatologist to evaluate suspicious moles and other skin conditions.

Muscle

The problem: Men begin losing muscle mass by age 30. The fix: Incorporate muscle training into your fitness routine to help increase bone density, metabolism, and muscle-fat ratio, while maintaining flexibility and balance.

Colon

The problem: Colon cancer is the third most common cancer in men. The fix: Eat a diet high in vegetables, fruits, and whole grains, and low in red meat and alcohol. Consider a colon­oscopy at age 50, particularly if colon cancer runs in the family.

Prostate

The problem: Benign prostatic hyperplasia (an enlarged prostate) affects about 50 percent of men between the ages of 51 and 60 and up to 90 percent of men older than 80. The fix: Eat a low-fat diet, exercise, and undergo a prostate exam by age 50 or sooner if at high risk for prostate cancer.

Testosterone

The problem: Levels typically decrease with age, with about 20 percent of men having low T by their 60s. The fix: See a doctor to get your testosterone levels checked, if experiencing a drop in libido, energy level, unexplained weight gain, or ongoing depression.

Article Source: http://www.johnshopkinshealthreview.com/issues/spring-summer-2017/articles/a-users-guide-to-mens-health

“The Greatest Health of Your Life”℠

Boston Testosterone Partners
National Testosterone Restoration for Men
Wellness & Preventative Medicine

Weight-Bearing Exercises Promote Bone Formation in Men

Leave a comment

Human hormone and protein linked to bone mass are impacted by 12 months of targeted exercise

COLUMBIA, Mo. – Osteoporosis affects more than 200 million people worldwide and is a serious public health concern, according to the National Osteoporosis Foundation. Now, Pamela Hinton, associate professor in the Department of Nutrition and Exercise Physiology, has published the first study in men to show that long-term, weight-bearing exercises decrease sclerostin, a protein made in the bone, and increase IGF-1, a hormone associated with bone growth. These changes promote bone formation, increasing bone density.

“People may be physically active, and many times people know they need to exercise to prevent obesity, heart disease or diabetes,” Hinton said. “However, you also really need to do specific exercises to protect your bone health.”

In the study, men 25- to 60-years-old who had low-bone mass were split into two groups. One group performed resistance training exercises such as lunges and squats using free weights. The other group performed various types of jumps, such as single-leg and double-leg jumps. After 12 months of performing the exercises, Hinton then compared the levels of bone proteins and hormones in the blood.

“We saw a decrease in the level of sclerostin in both of these exercise interventions in men,” Hinton said. “When sclerostin is expressed at high levels, it has a negative impact on bone formation. In both resistance and jump training, the level of sclerostin in the bone goes down, which triggers bone formation.”

The other significant change Hinton observed was an increase in the hormone IGF-1. Unlike sclerostin, IGF-1 triggers bone growth. The decrease of harmful sclerostin levels and the increase in beneficial IGF-1 levels confirmed Hinton’s prior research that found both resistance training and jump training have beneficial effects on bone growth.

To increase bone mass and prevent osteoporosis, Hinton recommends exercising specifically to target bone health. While exercises such as swimming and cycling are beneficial to overall health, these activities do not strengthen the skeleton. Hinton suggests also doing exercise targeted for bone health, such as resistance training and jump training.

The study, “Serum sclerostin decreases following 12 months of resistance- or jump-training in men with low bone mass,” was published in Bone.

https://www.eurekalert.org/pub_releases/2017-03/uom-wep032217.php

 

“The Greatest Health of Your Life”℠

Boston Testosterone Partners
National Testosterone Restoration for Men
Wellness & Preventative Medicine

Muscles Fight Cancer – The Science Behind Outmuscling Cancer

Leave a comment

Written by: Colin Champ, MD

Several years back a scientific article revealed that those of us with high “muscular strength” have a lower risk of becoming a victim to cancer – a 40% lower risk to be exact.1 After assessment of almost 9,000 men aged 20-82, scientists found that men with a stronger one-rep max on bench press and leg press have a 40% reduction in their risk of dying from cancer. They adjusted for body mass index (BMI), body fat, and cardiorespiratory fitness and the results still held strong (pun intended).2 In other words, there is something about simply being stronger that can lower our risk of getting cancer. Many felt as though there was something innately healthy about having more muscles, but another study associated weak hand grip strength with an increased risk of cancer, even regardless of muscle size.3 So is it all about strength or do muscles fight cancer?

Strength goes beyond lowering our risk of dying from cancer; it lowers our risk of dying from most major health issues. For instance, men exhibiting a lower vertical leap, less sit-ups, and decreased grip strength have a higher risk of dying period.4Men and women with moderate and high bench press and sit-up scores have lower risks of death,5 while men with a higher 1-repetition bench and leg press apparently live longer (even when we account for other health issues, like cardiovascular disease, smoking, obesity, etc.).6

Muscles Fight Cancer – More Muscles = More Health?

The first thought that comes to mind is that more muscles means more strength, and both are a result of more exercise. Sure enough, when we take a close look through these studies, we do see that the strongest among us have less body fat, are in better shape, and have better “good” cholesterol values with lower blood sugar and triglycerides.1 This is not surprising.

However, in nearly all these “muscles fight cancer” studies, other health issues were adjusted for and the findings still held. In other words, these studies seem to suggest that strength is independently associated with a lower risk of cancer and a higher change of avoiding an untimely death, regardless of age, smoking, alcohol usage, or other health issues. But as we know, associations can only take us so far, before we must explore the mechanism that support these associations.

Muscles Fight Cancer – It’s the Muscles!

In the study above, the scientists found some intriguing results: the benefits of muscular strength overlap with cardiovascular fitness, but the benefits of muscular strength in decreasing the risk of cancer death work through different mechanisms.1Perhaps the synergy exists, or in other words, having more muscle and strength is good, and exercising them is better.

For instance, we know that exercising our muscles leads to:

  • Improved insulin sensitivity (less insulin needed to remove sugar from our blood)
  • More sugar extracted from our blood by skeletal muscle and used for energy during exercise
  • Less cancer-promoting sugar and insulin floating around our blood
  • A decrease in the levels of hormones that, over a prolonged period, can lead to cancer. For instance, resistance training increases IGFBP-3, which binds to insulin-like growth factor (IGF), decreasing its ability to promote cancer (growth factors are normal within the human body, but too many can lead to excessive cellular growth, including cancer growth)7
  • Decreased inflammation (which when present, serves as a fertilizer for cancer)
  • Increased antioxidant defense, which helps fight potential cancer-causing free-radicals
  • Less inflammation-producing body fat

However, recent studies have changed much of our thinking when it comes to muscle. There are many organs in our body that respond to stimuli and secrete hormones, which serve as messages to direct remote parts of the body. We are recently starting to find some more unconventional organ-like structures in the body. For instance, it is now well-established that our adipose tissue works like an endocrine organ – albeit a bad one – secreting inflammatory hormones and an excess of potentially cancer-stimulating hormones.8 Take estrogen for example, which is a hormone that both men and women require to function normally. However, when supplied in higher than physiologically normal amounts from excess body fat, it can increase a woman’s risk of breast cancer. When women lose theses additional pounds through dietary changes and exercise, estrogen levels decrease.9

Studies have now shown that fat is not the only recently discovered endocrine organ. Muscle may act similarly, though this time to the benefit of our health. The metabolic muscular organ within us secretes IL-6, an important cytokine that was once felt to be a bad guy that caused inflammation. Newer studies reveal that IL-6 has a healthy role and is actually a myokine, which is an endocrine hormone produced by muscle (myo = muscle) and released during contraction. In other words, while fat secretes harmful hormones, muscles squeeze out some healthy hormones during lifting.

Muscles Fight Cancer – The Physiologic Benefits of Having More Muscle

As discussed above, exercise has plenty of benefits. However, contracting our muscles during running, resistance training, or simply heavy lifting provides benefits that are entirely separate from those of exercise.

For instance, while fat tissue secretes the pro-inflammatory cytokine TNF-α (which stands for tumor necrosis factor since our immune cells secrete it in the presence of tumor cells), our muscles secrete IL-6, which fights inflammation. As bad as fat is generally considered, muscle seems to stand in direct opposition to fat physiologically, and TNF versus IL-6 further embodies this difference.

  • Adipose-derived TNF is inflammatory, while muscle-derived IL-6 is anti-inflammatory.
  • Muscle-derived IL-6 signals to our body to break down lipids and burn fat.10
  • Adipose-derived TNF causes insulin resistance and impairs glucose uptake by our cells (both leading to increased blood sugar).11
  • While serious and often fatal events like septic shock cause a sudden release of TNF, excess adipose tissue causes the chronic release of harmful TNF.
  • Muscle-derived IL-6 helps regulate AMPK (while muscle contraction directly activates AMPK), which stimulates the breakdown of fat and cholesterol, stimulates our mitochondria, and potentially fights cancer.12

 

AMPK, or AMP-activated protein kinase, is an enzyme extensively expressed in our muscles, liver, and brain. It serves as an energy sensor and regulator and closely monitors changes in energy status based on our dietary and lifestyle habits. ATP, the energy currency of our cells, is broken down to AMP by our cells. ATP has three phosphates (the T is for tri) and when it loses one becomes ADP (the D is for di, or two) and when it loses two phosphates it becomes AMP (the M is for mono). Without dipping too deep into boredom territory:

ATP → ADP + P

ATP → AMP + 2P

AMPK works to supply more ATP and increase our available energy molecules. AMPK achieves this through several mechanisms described in the picture below. The dark blue mechanisms involve breaking down glucose (sugar) to burn for energy. This can be done by pulling glucose out of our blood stream and into our cells to be consumed. The aqua circles represent the breaking down of cholesterol and fat to be used as an efficient source of energy. The purple includes building more mitochondria to use these fats and sugars to make more energy, and the light blue mechanisms turn off cell building and replication.

 

Basically, AMPK signals to our body and cells that it is not a time for building, but rather for breaking down.

AMPK and Cancer

 

AMPK is, in essence, the antithesis of cancer. While cancer cells are burning large amounts of glucose and nutrients, this is mostly to build up biomass – or simply put to keep growing and spreading. AMPK, on the other hand, shuts off this process, blocking cancer growth so we can feed our own cells.12,13 As you can see in the picture to the right, AMPK actually blocks mTOR, a pathway that leads to cancer survival and growth.14 This is the same pathway that is blocked with targeted cancer drugs. You will also notice that the pathways are all affected by intermittent fasting, labeled as “IF,” as this is a state of energy scarcity.  You may also notice that increased insulin sensitivity, which happens though exercise and muscle contraction, also appears to upregulate AMPK.

AMPK and Warburg

The Warburg hypothesis is something that comes up often when dealing with cancer and metabolism. Briefly put, Warburg showed that regardless of the presence of oxygen, cancer cells prefer to use glucose for energy derivation (through a process known as glycolysis). In our normal cells, preference is given to the mitochondria for energy production, as it is significantly more efficient. While AMPK may stop several pro-cancer pathways, newer data shows that it actually blocks the Warburg Effect, by blocking the ability of cancer cells to use sugar for energy.15

AMPK is upregulated via several mechanisms (in no apparent order):

  1. Muscle contraction during exercise,16,17 with the more intense exercise resulting in increased expression of AMPK18
  2. Carbohydrate restriction (with or without fasting and even in the face of an increase in calories)19
  3. Intermittent fasting20

Inflammation is the fertilizer of cancer cells; it fosters an environment where normal cells can turn cancerous and cancer cells can grow with less effort. Inflammation has recently been labeled a “hallmark of cancer cells.”21 Any method to decrease this inflammation can provide health benefits, and even decrease the risk of cancer. When muscles are contracted, they release IL-6 and several other hormonal signals that act to decrease inflammation. These “signals” alert other organs that energy status is down, stimulating processes like AMPK,22 leading to a state of breaking down components for energy instead of stimulating growth processes like cancer. In other words, our muscles are creating signals that act at distant places within the body. These signals are plenty, but one of the more famous is when muscles signal to our bones to grow stronger23 – one of the many reasons why weight training strengthens bones.24 In a sense, the way in which our muscles “talk” with the rest of our body is only one of the many ways in which they improve our health, and ultimately, help in the fight against cancer.

Muscles Fight Cancer – The Physiologic Benefits of Lifting Weights

While our muscle cells (myocytes) secrete IL-6 at baseline, exercise increases this release up to 100 times.25 Those of us that exercise and contract our muscles frequently experience a sensitization to IL-6 when not exercising and at rest.26 While excess fat tissue desensitizes us to the action of insulin (i.e. more insulin is needed to get rid of extra blood sugar), increasing harmful amounts of blood sugar, contracting our muscle sensitizes us to the benefits of muscle-derived IL-6.

The amount of IL-6 produced depends on several factors,27 including:

  • Intensity of the exercise
  • Duration of the exercise
  • Endurance capacity
  • Size of muscle contracting
As a side note, carb-loading before exercise appears to oppose this effect, blunting IL-6 release from the muscle, perhaps paying homage to our ancient times of exercise, which was often hunting for wild game on an empty stomach.28

Countering the benefits of weight-lifting are the harms of inactivity, which, much like excess body fat, increases background inflammation.29 Exercise is such a powerful anti-inflammatory, that it offsets the potential inflammatory damage from injection of the toxin E. coli into healthy volunteers. For instance, while E. coli normally causes doubling or tripling of harmful TNF, when injected during exercise, no increase occurs.30 Not surprisingly, trained athletes have lower levels of several inflammatory factors.31

Inflammation is the likely cause of or contributor to many diseases, including atherosclerosis, diabetes, and cancer. Oxidative (free radical) damage is also considered a major cause of disease and cancer.32 Much like inflammation, high levels of free radicals can damage our cells and DNA, exposing us to a higher risk of cancer. To counter this potential damage, our cells have spent millions of years developing a defense mechanism against free radicals – known as the antioxidant defense system – that creates a plethora of antioxidant compounds that can offset the harm of radicals.

When we place men on a regimen of muscle-activating resistance training twice a week, many of these antioxidant defense mechanisms are activated. For instance, glutathione peroxidase, which defuses the potential damage from free radicals that are bound to lipids, is increased. Mitochondrial and cytosolic superoxide dismutase – which break apart, or dismutase the potentially harmful free radical superoxide – are amplified. Interestingly, when weight lifting was compared to endurance training, the latter antioxidant mechanism was only increased by weight training.33 Muscle biopsies of legs after unilateral resistance training shows similar findings, that antioxidant defense mechanisms are boosted.34

Finally, while muscle and fat can be considered opposites by the hormones they produce, the same can be said about stimulated muscle versus inactivity. Muscle contraction releases large amounts of IL-6, which sensitizes our cells to its effect, resulting in less IL-6 circulating at rest. In other words, our cells get better at dealing with IL-6 and inflammation from exercise. Muscle-derived IL-6 is beneficial, but a constantly elevated amount of IL-6 can be inflammatory.

High levels of adipose tissue and inactivity lead to an opposite state when it comes to insulin. Both decrease insulin sensitivity, or in other words, more insulin is required to rid the blood of sugar, which eventually results in chronically elevated levels of circulating insulin and sugar within our blood. Both are unhealthy and can lead to cancer.35 Further closing the loop of association, exercise-derived IL-6 increases insulin sensitivity and can prevent this damaging state from inactivity and excessive body fat.

Muscles Fight Cancer – A Final Comment of Exercise, Blood Sugar and Cancer

Many people have recently questioned the benefit of exercise before or after a cancer diagnosis since it can result in elevated levels of blood glucose. This occurs when our body mobilizes available stores of glucose (from glycogen within the liver and muscles). As increased blood glucose levels correlate with an increased risk of several cancers,36 this may seem concerning on the surface. Furthermore, while IL-6 secreted from muscle increases the breakdown of fats and activation of the AMPK energy sensor can reduce the risk of cancer,37–39 the increase in PI3K, another pro-cancer pathway, is concerning.

Yet, these changes primarily occur in the muscle, which is using the mobilized glucose. Furthermore, the rise in blood sugar is transient (glucose levels drop by 30 minutes afterwards40), and as exercise and resistance training increases insulin sensitivity, overall we are left with a lower blood glucose and insulin level.41 The multitude of other physiologic changes that occur listed above provide an overwhelming anti-cancer benefit. This has played out in several recent studies, showing a decreased risk of breast cancer in women who exercise, with some data suggesting additional benefit from strenuous exercise.42,43 The benefits appear to be similar for women who were already diagnosed with breast cancer.44

Muscles Fight Cancer – Conclusions

Muscles fight cancer and strength is associated with a decreased risk of cancer. The conclusions are obvious: if you are physically able, lift more weights, build more muscle, and increase your strength. Do it safely, do it right, and do it periodically to ensure that you are “health cost averaging.” Flex your muscles and squeeze out the anti-inflammatory beneficial messengers that direct the rest of our body to be healthy.

I hope this article has convinced you to lift (or throw around) some weights, put on some muscle, and fight cancer. The added benefits are stronger bones, a better physique, and hopefully, a longer life.

It looks like muscles fight cancer, but to do so, they must be put to work.

Muscles Fight Cancer References

  1. Ruiz JR, Sui X, Lobelo F, et al. Muscular strength and adiposity as predictors of adulthood cancer mortality in men. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1468-1476. doi:10.1158/1055-9965.EPI-08-1075.
  2. Ramírez-Vélez R, Correa-Bautista JE, Lobelo F, et al. High muscular fitness has a powerful protective cardiometabolic effect in adults: influence of weight status. BMC Public Health. 2016;16(1):1012. doi:10.1186/s12889-016-3678-5.
  3. Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. Int J Epidemiol. 2007;36(1):228-235. doi:10.1093/ije/dyl224.
  4. Fujita Y, Nakamura Y, Hiraoka J, et al. Physical-strength tests and mortality among visitors to health-promotion centers in Japan. J Clin Epidemiol. 1995;48(11):1349-1359. http://www.ncbi.nlm.nih.gov/pubmed/7490598. Accessed January 3, 2017.
  5. FitzGerald SJ, Barlow CE, Kampert JB, Morrow JR, Jackson AW, Blair SN. Muscular Fitness and All-Cause Mortality: Prospective Observations. J Phys Act Heal. 2004;1(1):7-18. doi:10.1123/jpah.1.1.7.
  6. Ruiz JR, Sui X, Lobelo F, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337.
  7. Izquierdo M, Ibañez J, González-Badillo JJ, et al. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J Appl Physiol. 2006;100(5).
  8. Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr. 1987;45(1):277-282. http://www.ajcn.org/content/45/1/277.abstract. Accessed January 24, 2017.
  9. Campbell KL, Foster-Schubert KE, Alfano CM, et al. Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial. J Clin Oncol. 2012;30(19):2314-2326. doi:10.1200/JCO.2011.37.9792.
  10. Hall G van, Steensberg A, Sacchetti M, et al. Interleukin-6 Stimulates Lipolysis and Fat Oxidation in Humans. J Clin Endocrinol Metab. July 2013. http://press.endocrine.org/doi/abs/10.1210/jc.2002-021687. Accessed September 30, 2015.
  11. Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes. 2005;54(10):2939-2945. http://www.ncbi.nlm.nih.gov/pubmed/16186396. Accessed January 27, 2017.
  12. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9(8):563-575. doi:nrc2676 [pii]10.1038/nrc2676.
  13. Green AS, Chapuis N, Maciel TT, et al. The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood. 2010;116(20):4262-4273. doi:blood-2010-02-269837 [pii] 10.1182/blood-2010-02-269837.
  14. Champ CE, Baserga R, Mishra M V, et al. Nutrient Restriction and Radiation Therapy for Cancer Treatment: When Less Is More. Oncologist. 2013;18(1):97-103. doi:10.1634/theoncologist.2012-0164.
  15. Faubert B, Boily G, Izreig S, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113-124. doi:10.1016/j.cmet.2012.12.001.
  16. Vavvas D, Apazidis A, Saha AK, et al. Contraction-induced changes in acetyl-CoA carboxylase and 5’-AMP-activated kinase in skeletal muscle. J Biol Chem. 1997;272(20):13255-13261. http://www.ncbi.nlm.nih.gov/pubmed/9148944. Accessed January 16, 2015.
  17. Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 1996;270(2 Pt 1):E299-304. http://www.ncbi.nlm.nih.gov/pubmed/8779952. Accessed January 16, 2015.
  18. Rasmussen BB, Winder WW. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J Appl Physiol. 1997;83(4):1104-1109. http://www.ncbi.nlm.nih.gov/pubmed/9338417. Accessed January 16, 2015.
  19. Draznin B, Wang C, Adochio R, Leitner JW, Cornier MA. Effect of Dietary Macronutrient Composition on AMPK and SIRT1 Expression and Activity in Human Skeletal Muscle. Horm Metab Res. 2012;44(9):650-655. doi:10.1055/s-0032-1312656.
  20. Cantó C, Jiang LQ, Deshmukh AS, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010;11(3):213-219. doi:10.1016/j.cmet.2010.02.006.
  21. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
  22. Hardie DG. Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr. 2011;93(4):891S-6. doi:ajcn.110.001925 [pii]10.3945/ajcn.110.001925.
  23. Hamrick MW. A role for myokines in muscle-bone interactions. Exerc Sport Sci Rev. 2011;39(1):43-47. doi:10.1097/JES.0b013e318201f601.
  24. Layne JE, Nelson ME. The effects of progressive resistance training on bone density: a review. Med Sci Sports Exerc. 1999;31(1):25-30. http://www.ncbi.nlm.nih.gov/pubmed/9927006. Accessed January 29, 2017.
  25. Pedersen BK, Steensberg A, Keller P, et al. Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflügers Arch Eur J Physiol. 2003;446(1):9-16. doi:10.1007/s00424-002-0981-z.
  26. Keller P, Keller C, Carey AL, et al. Interleukin-6 production by contracting human skeletal muscle: autocrine regulation by IL-6. Biochem Biophys Res Commun. 2003;310(2):550-554. doi:10.1016/j.bbrc.2003.09.048.
  27. Pedersen BK, Febbraio MA. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol Rev. 2008;88(4):1379-1406. doi:10.1152/physrev.90100.2007.
  28. Febbraio MA, Steensberg A, Keller C, et al. Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol. 2003;549(Pt 2):607-612. doi:10.1113/jphysiol.2003.042374.
  29. Gratas-Delamarche A, Derbré F, Vincent S, Cillard J. Physical inactivity, insulin resistance, and the oxidative-inflammatory loop. Free Radic Res. 2014;48(1):93-108. doi:10.3109/10715762.2013.847528.
  30. Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 2003;17(8):884-886. doi:10.1096/fj.02-0670fje.
  31. Lira FS, Rosa JC, Pimentel GD, et al. Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly trained subjects. Lipids Health Dis. 2010;9:82. doi:10.1186/1476-511X-9-82.
  32. Oberley TD. Oxidative damage and cancer. Am J Pathol. 2002;160(2):403-408. doi:10.1016/S0002-9440(10)64857-2.
  33. García-López D, Häkkinen K, Cuevas MJ, et al. Effects of strength and endurance training on antioxidant enzyme gene expression and activity in middle-aged men. Scand J Med Sci Sports. 2007;17(5):595-604. doi:10.1111/j.1600-0838.2006.00620.x.
  34. Parise G, Phillips SM, Kaczor JJ, Tarnopolsky MA. Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radic Biol Med. 2005;39(2):289-295. doi:10.1016/j.freeradbiomed.2005.03.024.
  35. Lehrer S, Diamond EJ, Stagger S, Stone NN, Stock RG. Increased serum insulin associated with increased risk of prostate cancer recurrence. Prostate. 2002;50(1):1-3. http://www.ncbi.nlm.nih.gov/pubmed/11757030. Accessed December 24, 2015.
  36. Crawley DJ, Holmberg L, Melvin JC, et al. Serum glucose and risk of cancer: a meta-analysis. BMC Cancer. 2014;14:985. doi:10.1186/1471-2407-14-985.
  37. Klement RJ, Champ CE. Calories, carbohydrates, and cancer therapy with radiation: exploiting the five R’s through dietary manipulation. Cancer Metastasis Rev. January 2014:1-13. doi:10.1007/s10555-014-9495-3.
  38. Klement RJ, Fink MK. Dietary and pharmacological modification of the insulin/IGF-1 system: exploiting the full repertoire against cancer. Oncogenesis. 2016;5:e193. doi:10.1038/oncsis.2016.2.
  39. Fine EJ, Champ CE, Feinman RD, Márquez S, Klement RJ. An Evolutionary and Mechanistic Perspective on Dietary Carbohydrate Restriction in Cancer Prevention. J Evol Heal. 2016;1(1). doi:10.15310/2334-3591.1036.
  40. Goodwin ML. Blood glucose regulation during prolonged, submaximal, continuous exercise: a guide for clinicians. J Diabetes Sci Technol. 2010;4(3):694-705. http://www.ncbi.nlm.nih.gov/pubmed/20513337. Accessed January 29, 2017.
  41. Adams OP. The impact of brief high-intensity exercise on blood glucose levels. Diabetes Metab Syndr Obes. 2013;6:113-122. doi:10.2147/DMSO.S29222.
  42. Bernstein L, Henderson BE, Hanisch R, Sullivan-Halley J, Ross RK. Physical Exercise and Reduced Risk of Breast Cancer in Young Women. JNCI J Natl Cancer Inst. 1994;86(18):1403-1408. doi:10.1093/jnci/86.18.1403.
  43. Carpenter CL, Ross RK, Paganini-Hill A, Bernstein L. Lifetime exercise activity and breast cancer risk among post-menopausal women. Br J Cancer. 1999;80(11):1852-1858. doi:10.1038/sj.bjc.6690610.
  44. Bradshaw PT, Ibrahim JG, Khankari N, et al. Post-diagnosis physical activity and survival after breast cancer diagnosis: the Long Island Breast Cancer Study. Breast Cancer Res Treat. 2014;145(3):735-742. doi:10.1007/s10549-014-2966-y.

 

Article Source:  http://colinchamp.com/muscles-fight-cancer/

“The Greatest Health of Your Life”℠

Boston Testosterone Partners
National Testosterone Restoration for Men
Wellness & Preventative Medicine

Developing a Strong Grip Is One Secret to Getting Stronger Overall

Leave a comment

Grip strength is an often overlooked and underappreciated aspect of strength training. After all, you use your grip for things like picking up and holding weights to supporting your bodyweight. If you can’t grip, you’ll have a hard time lifting, even if your other muscles are up for the task.

It’s not just weights, either. If your grip strength isn’t up to par in a pull-up, for example, you wouldn’t be able to pull yourself up. I mean, there could be many other possible weaknesses (crappy core and lats maybe) that keep you from getting stronger, but grip can easily be trained. Breaking Muscle provides a couple of ideas:

  • Hanging: Just hang. Hold on to a horizontal bar for dear life for a certain amount of time. The thicker the bar, the harder it is.
  • Loaded carries: These are a category of exercises that involves holding various amounts and types of weights in different ways. A farmer’s walk is one example.
  • Pinching: Hold a weight plate in your hands and pinch it like you’re holding a sandwich.
  • Extensor training: On the other hand, too much gripping can tighten up certain muscles in your forearms. Wrap a rubberband (like those used to wrap broccoli or asparagus) around your fingers and practice opening them up as wide as you can to give attention to your underworked extensor muscles.

Grip training seems like such a “gym bro” thing to do, but gripping things is baked into everyday stuff: You have to open jars, shake hands, hold bags, and so on. Don’t be that person who has a crappy handshake.

Written by Stephanie Lee.  Article Source: http://vitals.lifehacker.com/developing-a-strong-grip-is-one-secret-to-getting-stron-1788953434

 

“The Greatest Health of Your Life”℠

Boston Testosterone Partners
National Testosterone Restoration for Men
Wellness & Preventative Medicine

Mitochondria, Telomeres, Strength Training & What It Means For Something To Qualify As An “Anti-Aging” Activity

Leave a comment

 

In his excellent article series on anti-aging, anti-aging fitness expert Clarence Bass highlights this study showing that six months of progressive resistance training made the gene expression pattern of aging mitochondria appear significantly younger. 

Muscles can become smaller and weaker with age (a process known as sarcopenia), and evidence suggests that a key part of the decline occurs in a component of muscle cells called the mitochondria, the primary engine of energy production.

From the study, which was done on men at an average age of 70 years old, researchers reported that “…the older individuals were able to improve strength by approximately 50%, to levels that were only 38% less than that of young individuals…”. This means that seniors engaged in weight training closed the strength gap between themselves and their counterparts who were nearly 40 years younger from 59% to 38%, which is an improvement of almost 36% in a mere six months of the study.

Muscle biopsies from the study showed “a remarkable reversal of the expression profile of 179 genes associated with age and exercise training…Genes that were down-regulated with age were correspondingly up-regulated with exercise, while genes that were up-regulated with age, were down-regulated with exercise.”

The researchers summed things up by reporting that “healthy older adults show a gene expression profile in skeletal muscle consistent with mitochondrial dysfunction and associated processes such as cell death, as compared with young individuals. Moreover, following a period of resistance exercise training in older adults, we found that age-associated transcriptome expression changes were reversed, implying a restoration of a youthful expression profile.”

So when it comes to mitochondria, weight training reversed nearly 40 years of aging!

But exercise doesn’t only affect mitochondria.  Two more studies show how exercise protects DNA from the wear and tear of aging, and how the addition of fast-twitch muscle fibers precipitate fat loss and improve metabolic function – primarily by acting on telomeres.

Telomeres cap the DNA chromosomes in your cells and protect these chromosomes from damage. As you age, telomeres progressively wear and shorten from repeated cell division, oxidative stress, inflammation, and other metabolic processes, eventually leaving the cell’s chromosomes unprotected. When the caps are completely eroded or disappear, the wear and tear begins to cut into your genes, causing cells to become damaged and discarded as you grow older.

In this next study, scientists measured telomeres in twins to gauge the effect of exercise on aging, hypothesizing that “telomere dynamics might chronicle the cumulative burden of oxidative stress and inflammation and, as such, serve as an index of biological age” and that “physical activity level may have an [independent] effect on telomere attrition”.

They studied 2401 twins (2152 women and 249 men, aged 18 to 81), used questionnaires on physical activity level, smoking status, disease status, and socioeconomic status, and extracted DNA from blood samples.

So what did they find in this study on twins?

Telomere length decreased with age. No surprises there. But both the women and men who were physically active had longer telomeres than those who were sedentary, even after adjusting for the influence of age, weight, disease, socioeconomic status, and smoking.

In addition, the study participants who spent more than 3 hours each week engaged in vigorous physical activity (such as lifting weights) had longer telomeres than subjects 10 years younger, suggesting that individuals who eschew placing a vigorous load on their body may wind up biologically older by 10 years.

Obviously, since they were studying twins, these differences weren’t due to genes, but rather due to the lifestyle factor of exercise. When one twin exercised significantly more than the other, they had longer, more durable telomeres.

In the next study, researchers found that replacing slow-twitch type I muscle fibers with stronger and faster type II muscle fibers produced a significant reduction of fat mass and insulin resistance. Endurance training develops slow-twitch fibers, but strength training builds fast-twitch fibers.

For this study, researchers used a genetically engineered mouse that contained a muscle-growth regulating gene called Akt1 that could be turned on and off by the researchers. Activating Akt1 caused the mice to grow type II fibers, without exercise (important to note, since mice don’t really lift weights that well, even when commanded to by scientists in white lab coats). When the Akt1 gene was turned on, the mice took on the characteristics of a lean and powerful sprinter or weight lifter, and when the gene was turned off, the mice reverted to a predominance of type I muscle fibers, along with becoming more obese and insulin resistant (notably, this was without an actual change in diet!).

The researchers reported that “remarkably, type II muscle growth was associated with an overall reduction in body mass, due to a large decrease in fat mass. In addition, blood tests showed that these mice became metabolically normal [with no insulin resistance]. This work shows that type 2 muscle just doesn’t allow you to pick up heavy objects, it is also important in controlling whole body metabolism. It appears that the increase in type 2 muscle fiber orchestrates changes in the body through its ability to communicate with other tissues”.

Beyond the age of 30, we lose approximately six pounds of muscle mass per decade, and these findings indicate that interventions designed to increase skeletal muscle mass (such as weight training) may prove to be critical weapons in the fight against obesity and obesity-related ailments, including diabetes, heart disease, stroke, hypertension, and cancer.

The key point here of course is that weight training, due to it’s recruitment of type II muscle fibers, appears to be more effective than cardio, endurance and aerobics for fat loss, weight control, essentially converting the cells into a fat-burning machine.

Finally, yet another study on strength training effects on telomere length in human skeletal muscle looked into reports of a phenomenon of abnormally short telomeres in skeletal muscle of athletes who had overtraining and exercise-associated fatigue. This important study looked into the question of whether long-term hard exercise might have deleterious effects on muscle telomeres. So, using muscle biopsies, the researchers compared telomere length of a group of power lifters who had trained for an average of eight years against that of a group of healthy, active subjects who had no history of strength training.

There was absolutely no abnormal shortening of telomeres in the power lifters. As a matter of fact, telomere lengths in the power lifters were significantly higher than those of the control group, and telomere length was positively correlated to the power lifters’ individual records in the squat and deadlift!

These results show for the first time that long-term weight training is not associated with an abnormal shortening of skeletal muscle telomere length, and that the heavier the load you put on your muscles, the longer your telomeres will tend to be.

Written by: Ben Greenfield

Article Source: https://bengreenfieldfitness.com/2016/05/the-fittest-old-people/

“The Greatest Health of Your Life”℠

Boston Testosterone Partners
National Testosterone Restoration for Men
Wellness & Preventative Medicine

Older Entries